
Speech2Face : Learning the Face Behind a Voice

Saiteja Talluri Neelesh Verma Ankit
160050098 160050062 160050044

{saitejat,neelesh,ankitankit}@cse.iitb.ac.in

Abstract

In this project, the main motivation was to
infer about a person’s look from the way
they speak. We design and train a deep neu-
ral network to perform this task using thou-
sands of natural YouTube videos of peo-
ple speaking. During training, our model
learns voice-face correlations and then we
used it for voice recognition to evaluate the
efficiency of our model. The training is
done in a self-supervised manner, by utiliz-
ing the natural co-occurrence of faces and
speech in Internet videos, without the need
to model attributes explicitly.

1 Introduction
There is a strong correlation between speech of a
person and his/her appearance, part of which is a
direct result of the mechanics of speech production:
age, gender (which affects the pitch of our voice),
the shape of the mouth, facial bone structure, thin or
full lips — all can affect the sound we generate. In
addition, other voice-appearance correlations stem
from the way in which we talk: language, accent,
speed, pronunciations. In this project, out goal is
not to predict a recognizable image of the exact
face, but rather to capture dominant facial traits of
the person that are correlated with the input speech.

We design a neural network model that takes the
complex spectrogram of a short speech segment
as input and predicts a feature vector representing
the face. More specifically, face information is
represented by a 4096-D feature that is extracted
from the penultimate layer (i.e., one layer prior
to the classification layer) of a pre-trained face
recognition network. To train our model, we use
the AVSpeech dataset [2]. Our model is trained in
a self-supervised manner, i.e., it does not require
additional information, e.g., human annotations.

2 Speech2Face Model

The large variability in facial expressions, head
poses, occlusions, and lighting conditions in natu-
ral face images makes the design and training of a
Speech2Face model non-trivial. A very straightfor-
ward approach of regressing from input speech to
image pixels does not work because such a model
has to learn to factor out many irrelevant variations
in the data and implicitly extract a meaningful in-
ternal representation of faces — a challenging task
by itself.

We used the Speech2Face pipeline [3] as shown
in Figure 1. comprising of two main components:
1) a voice encoder, which takes a complex spec-
trogram of speech as input, and predicts a low-
dimensional face feature that would correspond to
the associated face; and 2) a face decoder, which
takes as input the face feature and produces an im-
age of the face in a canonical form (frontal-facing
and with neutral expression).

We trained only the Speech2Face model that pre-
dicts the face feature and the face decoder model
proposed by Cole et al. [1] was not available open
source, so we decided to implement it as a future
work. During training, the face decoder will be
fixed, and the voice encoder that predicts the face
feature is only trained. Moreover the complex spec-
trogram input and the 4096-D VGG face features
[4] (used to compute loss function) are precom-
puted to speed up the training process.

3 Implementation Details

3.1 Preprocessing
We used the AVSpeech dataset [2] comprising of
thousands of video segments from YouTube. Other
libraries and tools that we used for pre-processing
are described below :

• youtube-dl − download the videos from the
csv files corresponding to start and end times.

Figure 1: Speech2Face model and training pipeline. The input to the network is a complex spectrogram
computed from the short audio segment of a person speaking. The output is a 4096-D face feature that
is then decoded into a canonical image of the face using a pre-trained face decoder network [10]. The
module we train is marked by the orange-tinted box. We train the network to regress to the true face
feature computed by feeding an image of the person (representative frame from the video) into a face
recognition network [40] and extracting the feature from its penultimate layer. We trained the model on
around 5000 speech–face embedding pairs from the AVSpeech dataset [2]

• ffmpeg− extract audio and frames separately
from the video.

• librosa and tensorflow libraries − compute
stft and power law compression

• face recognition and keras vgg-facenet −
find face bounding boxes and compute 4096
dimensional face embedding vector.

We saved the audio spectrogram and the face em-
beddings as pickle files to speed up the training
process.

3.2 Architecture

The speech encoder architecture is a convolutional
neural network that turns the spectrogram of a
short input speech into a pseudo face feature as
shown in figure4. The blocks of a convolution layer,
ReLU, and batch normalization alternate with max-
pooling layers, which pool along only the tempo-
ral dimension of the spectrograms, while leaving
the frequency information carried over. This is in-
tended to preserve more of the vocal characteristics,
since they are better contained in the frequency con-
tent, whereas linguistic information usually spans
longer time duration.

At the end of these blocks, we apply average
pooling along the temporal dimension. This allows
us to efficiently aggregate information over time
and makes the model applicable to input speech
of varying duration. The pooled features are then
fed into two fully-connected layers to produce a
4096-D face feature.

3.3 Data

We divided the entire dataset that we downloaded
into 3 parts : Training Data (that is 80% of the
entire data), Validation Data (10% of the entire
data), and Test Data (10% of the entire data) as
shown in figure 3. We had 6100 of entire data, thus
training, test and validation data are as follows :

Figure 3: Train/Dev/Test Split

• Training Data - 4880 videos

• Validation Data - 610 videos

• Test Data - 610 videos

3.4 Training

Our voice encoder is trained in a self-supervised
manner, using the natural co-occurrence of a
speaker’s speech and facial images in videos. To
this end, we use the AVSpeech dataset, a large-
scale “in-the-wild” audiovisual dataset of people
speaking. A single frame containing the speaker’s
face is extracted from each video clip and fed to the
VGG-Face model [4] to extract the 4096-D feature
vector, vf . This serves as the supervision signal
for our voice encoder—the feature, vs, of our voice
encoder is trained to predict vf .

Figure 2: Pre-processing Pipeline. We used up to 6 seconds of audio taken from the beginning of each
video clip in AVSpeech. The audio waveform is then resampled at 16 kHz and only a single channel
is used. Spectrograms are computed by taking STFT with a Hann window of 25 mm, the hop length
of 10 ms, and 512 FFT frequency bands. Each complex spectrogram S subsequently goes through
the power-law compression, resulting sgn(S)|S|0.3 for real and imaginary independently, We run the
CNN-based face detector from Dlib, crop the face regions from the frames, and resize them to 224× 224
pixels. The VGG-Face features are computed from the resized face images. The computed spectrogram
and VGG-Face feature of each segment are collected in pickle files and then used for training.

Figure 4: Speech Encoder Architecture : The input spectrogram dimensions are 598 × 257 (time ×
frequency) with two input channels in the table corresponding to the spectrogram’s real and imaginary
components

.

3.5 Loss Function

(1)L1 = ‖Vf −Vs‖1

(2)L2norm =

∥∥∥∥ Vf

‖Vf‖
− Vs

‖Vs‖

∥∥∥∥2
2

LTotal =

∥∥∥∥ Vf

‖Vf‖
− Vs

‖Vs‖

∥∥∥∥2
2

+ λ2Ldistill(fV GG(vf), fV GG(vs))

(3)

(4)Ldistill(a,b) = −
∑
i

p(i)(a) ∗ log p(i)(b)

(5)p(i)(a) =
exp(ai/T)∑
j(exp(aj/T))

A natural choice for the loss function would be
the L1 loss. But, the training undergoes slow and

unstable progression with this loss. So we have
used L2norm loss for training where we first nor-
malize the feature vector and then calculate the L2
loss. Speech2Face paper [3] mentions another in-
teresting loss LTotal which additionally penalises
the difference in activation of the last layer of VGG
Facenet [4]. This uses knowledge distillation which
encourages the output of a network to approximate
the output of another. This requires the fc7 to
fc8 layer weights of VGG Facenet during training
which could not be sustained due to GPU memory
constraint.

4 Results

We test our model both qualitatively and quanti-
tatively on the AVSpeech dataset [2]. Our goal
is to gain insights and to quantify how closely
our Speech2Face model predicts the facial features
compared to the true facial features.

Model R@1 R@5 R@10 R@25 R@50 R@75 R@100
Train Data 45 52 55 58 62 64 66
Test Data 51 61 66 70 75 77 81

Table 1: Speech2Face −→ Face retrieval performance. We measure retrieval performance by recall at K
(R@K, in %), which indicates the chance of retrieving the true image of a speaker within the top-K results.
Train Data contains a database of 4800 images on which the model was trained and Test Data contains
around 600 completely new images.

Figure 5: Speech2Face −→ Face retrieval examples. We query a database of 600 face images by comparing
our Speech2Face prediction of input audio to all VGG-Face face features in the database. For each query,
we show the top-5 retrieved samples. First row (Perfect match i.e, top 1) : Speech suggests that the person
is Chinese and all our predicted faces are Chinese, however there is a case of gender mismatch in one
of the top 5 results. Second row (Perfect match) - Most of the predicted persons match in ethnicity and
gender. Last row is an example where the true face was not among the top results, this may be attributed
to too much beard (which model didn’t learn properly owing to less such data), poor quality of the
cropped images due to which face features are not proper. However most of the predicted faces have
their eyes looking downwards which is strikingly noticeable and may be related to the voice, though it is
little debatable.

5 Limitations and Challenges

The data preprocessing step for the task is very
time consuming for the AVSpeech Dataset [2] be-
cause of the downloading and computing audio
spectrograms and the face features. We prepro-
cessed around 6000 videos (compared to 2 million
by original paper) and it took around 40-50 hrs. We
trained the model on GTX 1080 Ti, it took around
20 min for very epoch and we trained for 10 hrs.
We couldn’t implement the distillation loss as it
requires large amount of GPU memory because the
model was huge and on top of that we require fc7
to fc8 layer VGG facenet weights during training.
We are very sure that increasing dataset to around 2

million, using multiple GPU’s, more training time
and fine tuning the hyper parameters can increase
the accuracy multi-fold.

6 Future Work

We didn’t implement the Face Decoder Model,
which takes the face features predicted by
Speech2Face model as input and produces an im-
age of the face in a canonical form (frontal-facing
and with neutral expression). The Speech2Face pa-
per [3] had used by the pretrained model by Cole et
al. [1], but the pretrained model was not available
open source. We tried to implement the model but
it required huge amount of data as the results were
not so satisfactory. As the main aim of the project

https://drive.google.com/open?id=10JN2CUJ2RNbClMS3P4m1bkWU0anUEvLR
https://drive.google.com/open?id=1f84_1hyUVutVv6_4LZ9A72Bv2JLTErq0
https://drive.google.com/open?id=1IgI2mF-Ww1D6AK4SA9UDCsG4ip2mBSkL

was to implement the Speech Model, we postpone
this vision task as a future work.

References

[1] Forrester Cole et al. “Synthesizing Normal-
ized Faces from Facial Identity Features”. In:
arXiv e-prints, arXiv:1701.04851 (Jan. 2017),
arXiv:1701.04851. arXiv: 1701 . 04851
[cs.CV].

[2] A. Ephrat et al. “Looking to listen at the
cocktail party: A speaker-independent audio-
visual model for speech separation”. In: arXiv
preprint arXiv:1804.03619 (2018).

[3] Tae-Hyun Oh et al. “Speech2Face: Learn-
ing the Face Behind a Voice”. In: arXiv
e-prints, arXiv:1905.09773 (May 2019),
arXiv:1905.09773. arXiv: 1905 . 09773
[cs.CV].

[4] Omkar M. Parkhi, Andrea Vedaldi, and An-
drew Zisserman. “Deep Face Recognition”.
In: BMVC. 2015.

https://arxiv.org/abs/1701.04851
https://arxiv.org/abs/1701.04851
https://arxiv.org/abs/1905.09773
https://arxiv.org/abs/1905.09773

	Introduction
	Speech2Face Model
	Implementation Details
	Preprocessing
	Architecture
	Data
	Training
	Loss Function

	Results
	Limitations and Challenges
	Future Work

